Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis.
نویسندگان
چکیده
Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis. J. Neurophysiol. 78: 2602-2615, 1997. The entorhinal cortex receives sensory inputs from the piriform cortex and modulatory inputs from the medial septum. To examine short-term synaptic facilitation effects in these pathways, current source density (CSD) analysis was used first to localize the entorhinal cortex membrane currents, which generate field potentials evoked by stimulation of these afferents. Field potentials were recorded at 50-micron intervals through the medial entorhinal cortex in urethan-anesthetized rats and the one-dimensional CSD was calculated. Piriform cortex stimulation evoked a surface-negative, deep-positive field potential component in the entorhinal cortex with mean onset and peak latencies of 10.4 and 18.4 ms. The component followed brief 100-Hz stimulation, consistent with a monosynaptic response. CSD analysis linked the component to a current sink, which often began in layer I before peaking in layer II. A later, surface-positive field potential component peaked at latencies near 45 ms and was associated with a current source in layer II. Medial septal stimulation evoked positive and negative field potential components which peaked at latencies near 7 and 16 ms, respectively. A weaker and more prolonged surface-negative, deep-positive component peaked at latencies near 25 ms. The early components were generated by currents in the hippocampal formation, and the late surface-negative component was generated by currents in layers II to IV of the entorhinal cortex. Short-term facilitation effects in conscious animals were examined using electrodes chronically implanted near layer II of the entorhinal cortex. Paired-pulse stimulation of the piriform cortex at interpulse intervals of 30 and 40 ms caused the largest facilitation (248%) of responses evoked by the second pulse. Responses evoked by medial septal stimulation also were facilitated maximally (59%) by a piriform cortex conditioning pulse delivered 30-40 ms earlier. Paired pulse stimulation of the medial septum caused the largest facilitation (149%) at intervals of 70 ms, but piriform cortex evoked responses were facilitated maximally (46%) by a septal conditioning pulse 100-200 ms earlier. Frequency potentiation effects were maximal during 12- to 18-Hz stimulation of either the piriform cortex or medial septum. Occlusion tests suggested that piriform cortex and medial septal efferents activate the same neurons. The CSD analysis results show that evoked field potential methods can be used effectively in chronically prepared animals to examine synaptic responses in the converging inputs from the piriform cortex and medial septum to the entorhinal cortex. The short-term potentiation phenomena observed here suggest that low-frequency activity in these pathways during endogenous oscillatory states may enhance entorhinal cortex responsivity to olfactory inputs.
منابع مشابه
Olfactory inputs activate the medial entorhinal cortex via the hippocampus.
The lateral and medial regions of the entorhinal cortex differ substantially in terms of connectivity and pattern of activation. With regard to olfactory input, a detailed and extensive physiological map of the olfactory projection to the entorhinal cortex is missing, even if anatomic studies suggest that the olfactory afferents are confined to the lateral and rostral entorhinal region. We stud...
متن کاملStimulation of the parasubiculum modulates entorhinal cortex responses to piriform cortex inputs in vivo.
Although a major output of the hippocampal formation is from the subiculum to the deep layers of the entorhinal cortex, the parasubiculum projects to the superficial layers of the entorhinal cortex and may therefore modulate how the entorhinal cortex responds to sensory inputs from other cortical regions. Recordings at multiple depths in the entorhinal cortex were first used to characterize fie...
متن کاملThe effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملDopaminergic Modulation of Entorhinal Cortex Function
Dopaminergic Modulation of Entorhinal Cortex Function Douglas A. Caruana, Ph.D. Concordia University, 2008 The neurotransmitter dopamine has been shown to play an important role in the mnemonic functions of the prefrontal cortex, but it is unclear how dopamine may affect sensory and mnemonic processing in the entorhinal cortex. Midbrain dopamine neurons project to the superficial layers of the ...
متن کاملDopamine has bidirectional effects on synaptic responses to cortical inputs in layer II of the lateral entorhinal cortex.
Dopaminergic modulation of neuronal function has been extensively studied in the prefrontal cortex, but much less is known about its effects on glutamate-mediated synaptic transmission in the entorhinal cortex. The mesocortical dopamine system innervates the superficial layers of the lateral entorhinal cortex and may therefore modulate sensory inputs to this area. In awake rats, systemic admini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 5 شماره
صفحات -
تاریخ انتشار 1997